The Elusive 20% Time

This is the original text of Alexei Zheglov’s sidebar on capacity utilization in Chapter 2. We had to edit it

for space reasons for the book.

The 20% time has become popular in the software industry in recent years. Even though most software
engineers don’t work at companies that have 20% time, most have heard or know someone who works
at a place like Google, where employees spend 80% of their hours working on what the company
requires them to do and 20% on their own projects. Or so we have been told.

A shop across town is doing it and now we want to do it too. Many have tried to introduce 20% time in
their workplaces and that proved to be very difficult. So, how can we do it? What are the dos and
don’ts? Is there some theory behind this practice?

The main reason for 20% time is to keep the average capacity utilization at 80% rather than at 100%.

We can think of a software development organization as a system that turns feature requests into

developed features. We can then model its behaviour using queuing theory.

Theory

If requests arrive faster than the system can service them, they queue up. When arrivals are slower, the
gueue size decreases. Because the arrival and service processes are random, the queue size changes
randomly with time. The mathematically inclined can ask about this randomness: there must be some
probability distribution, so what will the queue size be on average? Math (queuing theory) has an
answer to that:

(Here the Greek letter rho denotes the utilization coefficient equal to the ratio of service and arrival
rates. This simple formula owes to the assumption that the arrival and service processes are so-called
Markov processes. It's a close approximation of the real-world arrival and service processes. The math

is more complicated for non-Markov processes, but leads to the same conclusion.)



Queue Size

50.00

40.00 -
30.00 - l
20.00 -

10.00 - o

0.00 - T T ; ‘ p— T T —
0 01 02 03 04 05 06 07 08 0S5

By plotting this function we can see that the average queue size remains low while utilization is up to
0.8, then rises sharply and goes to infinity. We can understand this intuitively by thinking about our
computer’s CPU: when its utilization is low, it responds instantly to our inputs, but when a background
task pushes its utilization close to 100%, the computer becomes frustratingly slow to respond to every
click.

Practice

The economics of software development is such that software companies incur very high costs of delay
when their queues are in high-queue states. This includes missed market opportunities, obsolete
products, late projects, and waste caused by building features in anticipation of demand. The 20% time
is thus the scientific answer to the problem of optimizing economic outcomes: avoid high-queue states
by avoiding the high utilization causing them. It is essentially the slack that keeps the system

responsive.
Several practical conclusions about what not to do follow immediately:

* cost accounting (engineers' time costs X, but/and the company can/cannot afford it). The
economic benefit comes from reducing the cost of delay.

* setting up a 20% time project proposal submission-review-approval system

* tracking the 20% time by filling out timesheets

* usinginnovation as a motivator for the 20% time. While new products have come out of 20%
projects, they were not the point. If your company cannot innovate during its core hours, that’s
a problem!

* relying on the 20% time to encourage creativity. Saying you’ll unleash your creativity with 20%
time begs the question why you’re not creative enough already during your core hours.

* allocating the 20% time to a Friday every week...



Those are All Don'ts, Where Are the Dos?

OK, what about doing it right? Let's answer with the best question we’ve heard while discussing this
subject with practitioners: “If 20% of your capacity is mandated to be filled with non-queue items, then
you’ve just shrunk your capacity to 80%, and 80% is your new 100%. Right?”

Yes, “80 is the new 100" highlights the main problem with the attempts to mandate the 20% time
without understanding the theory. You want to escape the utilization trap, not to stay in the trap and
allocate time differently.

Remember that the utilization depends on two processes: arrival process (demand) and service process
(capability). You can't really choose your utilization. It is what it is because the processes are what they
are. You can, however, work on the processes: by improving your company’s software delivery
capability and shaping the demand. As you make progress, slack will emerge.

Do escape the utilization trap!



