
	 101

Chapter 8

Using Models to Help Plan

As agile development becomes increasingly mainstream, there are estab-
lished techniques that experienced practitioners use to help plan testing
activities in agile projects, although less experienced teams sometimes
misunderstand or misuse these useful approaches. Also, the advances in
test tools and frameworks have somewhat altered the original models
that applied back in the early 2000s. Models help us view testing from
different perspectives. Let’s look at some foundations of agile test plan-
ning and how they are evolving.

Agile Testing Quadrants

The agile testing quadrants (the Quadrants) are based on a matrix Brian
Marick developed in 2003 to describe types of tests used in Extreme
Programming (XP) projects (Marick, 2003). We’ve found the Quad-
rants to be quite handy over the years as we plan at different levels of
precision. Some people have misunderstood the purpose of the Quad-
rants. For example, they may see them as sequential activities instead of
a taxonomy of testing types. Other people disagree about which testing
activities belong in which quadrant and avoid using the Quadrants alto-
gether. We’d like to clear up these misconceptions.

Figure 8-1 is the picture we currently use to explain this model. You’ll
notice we’ve changed some of the wording since we presented it in Agile

8. Using Models
to Help Plan

Agile Testing Quadrants

Challenging the Quadrants

Using Other Influences for Planning

Planning for Test Automation

Planning for Quadrant 1 Testing

Planning for Quadrant 2 Testing

Planning for Quadrant 3 Testing

Planning for Quadrant 4 Testing

Gregory_Crispin_CH08.indd 101 9/10/14 11:19 AM

102	 Chapter 8   n  Using Models to Help Plan

Testing. For example, we now say “guide development” instead of “sup-
port development.” We hope this makes it clearer.

It’s important to understand the purpose behind the Quadrants and the
terminology used to convey their concepts. The quadrant numbering
system does not imply any order. You don’t work through the quadrants
from 1 to 4, in a sequential manner. It’s an arbitrary numbering system
so that when we talk about the Quadrants, we can say “Q1” instead of
“technology-facing tests that guide development.” The quadrants are

■■ Q1: technology-facing tests that guide development
■■ Q2: business-facing tests that guide development
■■ Q3: business-facing tests that critique (evaluate) the product
■■ Q4: technology-facing tests that critique (evaluate) the product

The left side of the quadrant matrix is about preventing defects before
and during coding. The right side is about finding defects and discov-
ering missing features, but with the understanding that we want to
find them as fast as possible. The top half is about exposing tests to the

Technology Facing

Q2

Examples
A/B Tests

Story Tests (written first)
UX (user experience) testing

Prototypes
Simulations

Unit Tests
Component Tests (code level)

Testing Connectivity

Exploratory Testing
Workflows

System Integration
(business oriented)

Usability Testing
UAT (user acceptance testing)

Performance Testing
Load Testing

Security Testing
Quality Attributes (...ilities)

Q1

Q3

Q4

Business Facing

G
ui

d
e

D
ev

el
o

p
m

en
t Critiq

ue the Pro
d

uct

Figure 8-1  Agile testing quadrants

Gregory_Crispin_CH08.indd 102 9/10/14 11:19 AM

	 Agile Testing Quadrants	 103

business, and the bottom half is about tests that are more internal to
the team but equally important to the success of the software product.
“Facing” simply refers to the language of the tests—for example, perfor-
mance tests satisfy a business need, but the business would not be able
to read the tests; they are concerned with the results.

Most agile teams would start with specifying Q2 tests, because those
are where you get the examples that turn into specifications and tests
that guide coding. In his 2003 blog posts about the matrix, Brian called
Q2 and Q1 tests “checked examples.” He had originally called them
“guiding” or “coaching” examples and credits Ward Cunningham for
the adjective “checked.” Team members would construct an example
of what the code needs to do, check that it doesn’t do it yet, make the
code do it, and check that the example is now true (Marick, 2003). We
include prototypes and simulations in Q2 because they are small experi-
ments to help us understand an idea or concept.

In some cases it makes more sense to start testing for a new feature using
tests from a different quadrant. Lisa has worked on projects where her
team used performance tests for a spike for determination of the archi-
tecture, because that was the most important quality attribute for the
feature. Those tests fall into Q4. If your customers are uncertain about
their requirements, you might even do an investigation story and start
with exploratory testing (Q3). Consider where the highest risk might be
and where testing can add the most value.

Most teams concurrently use testing techniques from all of the quad-
rants, working in small increments. Write a test (or check) for a small
chunk of a story, write the code, and once the test is passing, perhaps
automate more tests for it. Once the tests (automated checks) are pass-
ing, use exploratory testing to see what was missed. Perform security
or load testing, and then add the next small chunk and go through the
whole process again.

Michael Hüttermann adds “outside-in, barrier-free, collaborative” to
the middle of the quadrants (see Figure 8-2). He uses behavior-driven
development (BDD) as an example of barrier-free testing. These tests
are written in a natural, ubiquitous “given_when_then” language that’s
accessible to customers as well as developers and invites conversation

Gregory_Crispin_CH08.indd 103 9/10/14 11:19 AM

104	 Chapter 8   n  Using Models to Help Plan

between the business and the delivery team. This format can be used
for both Q1 and Q2 checking. See Michael’s Agile Record article (Hüt-
termann, 2011b) or his book Agile ALM (Hüttermann, 2011a) for more
ideas on how to augment the Quadrants.

The Quadrants are merely a taxonomy or model to help teams plan
their testing and make sure they have all the resources they need to
accomplish it. There are no hard-and-fast rules about what goes in
which quadrant. Adapt the Quadrants model to show what tests your
team needs to consider. Make the testing visible so that your team thinks
about testing first as you do your release, feature, and story planning.
This visibility exposes the types of tests that are currently being done
and the number of people involved. Use it to provoke discussions about
testing and which areas you may want to spend more time on.

When discussing the Quadrants, you may realize there are neces-
sary tests your team hasn’t considered or that you lack certain skills
or resources to be able to do all the necessary testing. For example, a
team that Lisa worked on realized that they were so focused on turning

Technology Facing

Examples
A/B Tests

Story Tests (written first)
UX (user experience) testing

Prototypes (paper or wireframes)
Simulations

Unit Tests
Component Tests (code level)

Testing Connectivity

Exploratory Testing
Workflows

System Integration
(business oriented)

Usability Testing
UAT (user acceptance testing)

Performance Testing
Load Testing

Security Testing
Quality Attributes (...ilities)

Business Facing

G
ui

d
e

D
ev

el
o

p
m

en
t Critiq

ue the Pro
d

uct

Outside-in
Barrier-free

Collaborative

Figure 8-2  Agile testing quadrants (with Michael Hüttermann’s adaptation)

Gregory_Crispin_CH08.indd 104 9/10/14 11:19 AM

	 Agile Testing Quadrants	 105

business-facing examples into Q2 tests that guide development that
they were completely ignoring the need to do performance and security
testing. They added in user stories to research what training and tools
they would need and then budgeted time to do those Q4 tests.

Planning for Quadrant 1 Testing

Back in the early 1990s, Lisa worked on a waterfall team whose program-
mers were required to write unit test plans. Unit test plans were definitely
overkill, but thinking about the unit tests early and automating all of
them were a big part of the reason that critical bugs were never called
in to the support center. Agile teams don’t plan Q1 tests separately. In
test-driven development (TDD), also called test-driven design, testing is
an inseparable part of coding. A programmer pair might sit and discuss
some of the tests they want to write, but the details evolve as the code
evolves. These unit tests guide development but also support the team in
the sense that a programmer runs them prior to checking in his or her
code, and they are run in the CI on every single check-in of code.

There are other types of technical testing that may be considered as
guiding development. They might not be obvious, but they can be criti-
cal to keeping the process working. For example, let’s say you can’t do
your testing because there is a problem with connectivity. Create a test
script that can be run before your smoke test to make sure that there
are no technical issues. Another test programmers might write is one to
check the default configuration. Many times these issues aren’t known
until you start deploying and testing.

Planning for Quadrant 2 Testing

Q2 tests help with planning at the feature or story level. Part IV, “Testing
Business Value,” will explore guiding development with more detailed
business-facing tests. These tests or checked examples are derived from
collaboration and conversations about what is important to the feature
or story. Having the right people in a room to answer questions and
give specific examples helps us plan the tests we need. Think about the
levels of precision discussed in the preceding chapter; the questions and
the examples get more precise as we get into details about the stories.
The process of eliciting examples and creating tests from them fosters

Gregory_Crispin_CH08.indd 105 9/10/14 11:19 AM

106	 Chapter 8   n  Using Models to Help Plan

collaboration across roles and may identify defects in the form of hid-
den assumptions or misunderstandings before any code is written.

Show everyone, even the business owners, what you plan to test; see if
you’re standing on anything sacred, or if they’re worried you’re missing
something that has value to them.

Creating Q2 tests doesn’t stop when coding begins. Lisa’s teams have
found it works well to start with happy path tests. As coding gets under
way and the happy path tests start passing, testers and programmers
flesh out the tests to encompass boundary conditions, negative tests,
edge cases, and more complicated scenarios.

Planning for Quadrant 3 Testing

Testing has always been central to agile development, and guiding
development with customer-facing Q2 tests caught on early with agile
teams. As agile teams have matured, they’ve also embraced Q3 testing,
exploratory testing in particular. More teams are hiring expert explor-
atory testing practitioners, and testers on agile teams are spending time
expanding their exploratory skills.

Planning for Q3 tests can be a challenge. We can start defining test char-
ters before there is completed code to explore. As Elisabeth Hendrick-
son explains in her book Explore It! (Hendrickson, 2013), charters let
us define where to explore, what resources to bring with us, and what
information we hope to find. To be effective, some exploratory test-
ing might require completion of multiple small user stories, or waiting
until the feature is complete. You may also need to budget time to create
the user personas that you might need for testing, although these may
already have been created in story-mapping or other feature-planning
exercises. Defining exploratory testing charters is not always easy, but it
is a great way to share testing ideas with the team and to be able to track
what testing was completed. We will give examples of such charters in
Chapter 12, “Exploratory Testing,” where we discuss different explor-
atory testing techniques.

One strategy to build in time for exploratory testing is writing stories
to explore different areas of a feature or different personas. Another

Gregory_Crispin_CH08.indd 106 9/10/14 11:19 AM

	 Agile Testing Quadrants	 107

strategy, which Janet prefers, is having a task for exploratory testing for
each story, as well as one or more for testing the feature. If your team
uses a definition of “done,” conducting adequate exploratory testing
might be part of that. You can size individual stories with the assump-
tion that you’ll spend a significant amount of time doing exploratory
testing. Be aware that unless time is specifically allocated during task
creation, exploratory testing often gets ignored.

Q3 also includes user acceptance testing (UAT). Planning for UAT needs
to happen during release planning or as soon as possible. Include your
customers in the planning to decide the best way to proceed. Can they
come into the office to test each new feature? Perhaps they are in a differ-
ent country and you need to arrange computer sharing. Work to get the
most frequent and fastest feedback possible from all of your stakeholders.

Planning for Quadrant 4 Testing

Quadrant 4 tests may be the easiest to overlook in planning, and many
teams tend to focus on tests to guide development. Quadrant 3 activities
such as UAT and exploratory testing may be easier to visualize and are
often more familiar to most testers than Quadrant 4 tests. For exam-
ple, more teams need to support their application globally, so testing in
the internationalization and localization space has become important.
Agile teams have struggled with how to do this; we include some ideas
in Chapter 13, “Other Types of Testing.”

Some teams talk about quality attributes with acceptance criteria on
each story of a feature. We prefer to use the word constraints. In Discover
to Deliver (Gottesdiener and Gorman, 2012), Ellen Gottesdiener and
Mary Gorman recommend using Tom and Kai Gilb’s Planguage (their
planning language; see the bibliography for Part III, “Planning—So You
Don’t Forget the Big Picture,” for links) to talk about these constraints
in a very definite way (Gilb, 2013).

If your product has a constraint such as “Every screen must respond in
less than three seconds,” that criterion doesn’t need to be repeated for
every single story. Find a mechanism to remind your team when you
are discussing the story that this constraint needs to be built in and
must be tested. Liz Keogh describes a technique to write tests about

Gregory_Crispin_CH08.indd 107 9/10/14 11:19 AM

108	 Chapter 8   n  Using Models to Help Plan

how capabilities such as system performance can be monitored (Keogh,
2014a). Organizations usually know which operating systems or brows-
ers they are supporting at the beginning of a release, so add them as
constraints and include them in your testing estimations. These types of
quality attributes are often good candidates for testing at a feature level,
but if it makes sense to test them at the story level, do so there; think,
“Test early.” Chapter 13, “Other Types of Testing,” will cover a few differ-
ent testing types that you may have been struggling with.

Challenging the Quadrants

Over the years, many people have challenged the validity of the Quad-
rants or adjusted them slightly to be more meaningful to them. We
decided to share a couple of these stories because we think it is valuable
to continuously challenge what we “know” to be true. That is how we
learn and evolve to improve and meet changing demands.

Gojko’s Challenge to the Quadrants

Gojko Adzic, an author and strategic software delivery con-
sultant, challenges the validity of the Quadrants in the current
software delivery era.

The agile testing quadrants model is probably the one thing that every-
one remembers about the original Agile Testing book. It was an incred-
ibly useful thinking tool for the software delivery world then—2008. It
helped me facilitate many useful discussions on the big picture missing
from typical programmers’ view of quality, and it helped many testers
figure out what to focus on. The world now, as of 2014, looks signifi-
cantly different. There has been a surge in the popularity of continuous
delivery, DevOps, Big Data analytics, lean startup delivery, and explor-
atory testing. The Quadrants model is due for a serious update.

One of the problems with the original Quadrants model is that it was
easily misunderstood as a sequence of test types—especially that
there is some kind of division between things before and things after
development.

This problem is even worse now than in 2008. With the surge in popu-
larity of continuous delivery, the dividing line is getting more blurred
and is disappearing. With shorter iterations and continuous delivery,
it’s generally difficult to draw the line between activities that support
the team and those that critique the product. Why would performance

Gregory_Crispin_CH08.indd 108 9/10/14 11:19 AM

	 Challenging the Quadrants	 109

tests not be aimed at supporting the team? Why are functional tests
not critiquing the product? Why is UAT separate from functional test-
ing? I always found the horizontal dimension of the Quadrants difficult
to justify, because critiquing the product can support the team quite
effectively if it is done in a timely way. For example, specification by
example helps teams to completely merge functional tests and UAT
into something that is continuously checked during development.
Many teams I worked with recently run performance tests during
development, primarily not to mess things up with frequent changes.
These are just two examples where things on the right side of the
Quadrants are now used more to support the team than anything else.
With lean startup methods, products get a lot of critiquing even before
a single line of production code is written.

Dividing tests into those that support development and those that
evaluate the product does not really help to facilitate useful discus-
sions anymore, so we need a different model—in particular, one
that helps to address the eternal issue of so-called nonfunctional
requirements, which for many people actually means, “It’s going to be
a difficult discussion, so let’s not have it.” The old Quadrants model
puts “ilities” into a largely forgotten quadrant of technical tests after
development. But things like security, performance, scalability, and so
on are not really technical; they imply quite a lot of business expecta-
tions, such as compliance, meeting service-levels agreements, handling
expected peak loads, and so on. They are also not really nonfunc-
tional, as they imply quite a lot of functionality such as encryption,
caching, and work distribution. This of course is complicated by the
fact that some expectations in those areas are not that easy to define
or test for—especially the unknown unknowns. If we treat these as
purely technical concerns, the business expectations are often not
explicitly stated or verified. Instead of nonfunctional, these concerns
are often dysfunctional. And although many “ilities” are difficult to
prove before the software is actually in contact with its real users, the
emergence of A/B split testing techniques over the last five years has
made it relatively easy, cheap, and low risk to verify those things in
production.

Another aspect of testing not really captured well by the first book’s
Quadrants is the surge in popularity and importance of exploratory
testing. In the old model, exploratory testing is something that hap-
pens from the business perspective in order to evaluate the product
(often misunderstood as after development). In many contexts, well
documented in Elisabeth Hendrickson’s book on exploratory testing
(Hendrickson, 2013) and James Whittaker’s book How Google Tests
Software (Whittaker et al., 2012), exploratory testing can be incredibly
useful for the technical perspective as well and, more importantly, is
something that should be done during development.

Gregory_Crispin_CH08.indd 109 9/10/14 11:19 AM

110	 Chapter 8   n  Using Models to Help Plan

The third aspect that is not captured well by the early Quadrants is the
possibility to quantify and measure software changes through usage
analytics in production. The surge in popularity of Big Data analytics,
especially combined with lean startup and continuous delivery models,
enables teams to test relatively cheaply things that were very expensive
to test ten years ago—for example, true performance impacts. When the
original Agile Testing book came out, serious performance testing often
meant having a complete hardware copy of the production system.
These days, many teams de-risk those issues with smaller, less risky con-
tinuous changes, whose impact is measured directly on a subset of the
production environment. Many teams also look at their production log
trends to spot unexpected and previously unknown problems quickly.

We need to change the model (Figure 8-3) to facilitate all those dis-
cussions, and I think that the current horizontal division isn’t helping
anymore. The context-driven testing community argues very forcefully
that looking for expected results isn’t really testing; instead, they call
that checking. Without getting into an argument about what is or isn’t
testing, I found the division to be quite useful for many recent discus-
sions with clients. Perhaps that is a more useful second axis for the
model: the difference between looking for expected outcomes and
analyzing unknowns, aspects without a definite yes/no answer, where
results require skillful analytic interpretation. Most of the innovation
these days seems to happen in the second part anyway. Checking for
expected results, from both a technical and business perspective, is
now pretty much a solved problem.

TECHNOLOGY

Spec by Example

Performance

Compliance

Regression

Hypothesis (
LS)

Unit (T
DD)

Integration

Data Formats

API

Compatibility

ExploratoryUsability
Stakeholder Impact

Usage Analytics
A/B Testing

LoadPenetration
Production Trends

Smoke

BUSINESS

Ch
ec

k
fo

r
Ex

pe
ct

ed
 O

ut
pu

ts

A
na

ly
ze

 U
nd

ef
in

ed
U

nk
no

wn
, a

nd
 U

ne
xp

ec
te

d

Figure 8-3  Gojko Adzic’s version of the agile testing quadrants

Gregory_Crispin_CH08.indd 110 9/10/14 11:19 AM

	 Challenging the Quadrants	 111

Thinking about checking expected outcomes versus analyzing out-
comes that weren’t predefined helps to explain several important
issues facing software delivery teams today:

Security concerns could be split easily into functional tests for compli-
ance such as encryption, data protection, authentication, and so  
on (essentially all checking for predefined expected results), and  
penetration/investigations (not predefined). This will help to engage
the delivery team and business sponsors in a more useful discussion
about describing the functional part of security up front.

Performance concerns could be divided into running business sce-
narios to prove agreed-upon service levels and capacity, continuous
delivery style (predefined), and load tests (where will it break?). This
will help to engage the delivery team and business in defining perfor-
mance expectations and prevent people from treating performance as
a purely technical concern. By avoiding the support the team/evaluate
the product divisions, we allow a discussion of executing performance
tests in different environments and at different times.

Exploration would become much more visible and could be clearly
divided between technical and business-oriented exploratory tests.
This can support a discussion of technical exploratory tests that devel-
opers should perform or that testers can execute by reusing existing
automation frameworks. It can also support an overall discussion of
what should go into business-oriented exploratory tests.

Build-measure-learn product tests would fit into the model nicely, and
the model would facilitate a meaningful discussion of how those tests
require a defined hypothesis and how that is different from just push-
ing things out to see what happens through usage analytics.

We can facilitate a conversation on how to spot unknown problems
by monitoring production logs as a way of continuously testing tech-
nical concerns that are difficult to check and expensive to automate
before deployment, but still useful to support the team. By moving
the discussion away from supporting development or evaluating the
product toward checking expectations or inspecting the unknown, we
would also have a nice way of differentiating those tests from business-
oriented production usage analytics.

Most importantly, by using a different horizontal axis, we can raise
awareness about a whole category of things that don’t fit into typi-
cal test plans or test reports but are still incredibly valuable. The early
Quadrants were useful because they raised awareness about a whole
category of things in the upper-left corner that most teams weren’t
really thinking of but are now taken as common sense. The 2010s
Quadrants need to help us raise awareness about some more impor-
tant issues for today.

Gregory_Crispin_CH08.indd 111 9/10/14 11:19 AM

112	 Chapter 8   n  Using Models to Help Plan

Elisabeth Hendrickson also presented an alternative to the existing
Quadrants in her talk about “The Thinking Tester” (Hendrickson, 2012).
It is similar to Gojko’s version but has a different look. You can see in Fig-
ure 8-4 that she relabeled the vertical columns to “confirm” and “inves-
tigate,” while the horizontal rows still represent business and technology.

The top left quadrant represents the expectations of the business, which
could be in the form of executable (automated) specifications. Others
might be represented by paper prototypes or wireframes. At the top
right are tests that help investigate risks concerning the external qual-
ity of the product. It is very much like the original quadrant’s idea of
exploratory testing, scenarios, or usability testing. Like Gojko’s model,
the bottom right quadrant highlights the risks of the internal working
of the system.

Both of these alternative models provide value. We think there is room
for multiple variations to accommodate a spectrum of needs. For exam-
ple, organizations that are able to adopt continuous delivery are able to
think in this space, but many organizations are years from accomplish-
ing that. Check the bibliography for Part III for links to additional test-
ing quadrant models. Use them to help make sure your team covers all

BUSINESS

CONFIRM

BUSINESS-FACING
EXPECTATIONS

RISKS TO EXTERNAL
QUALITY ATTRIBUTES

TECHNOLOGY-
FACING

EXPECTATIONS

RISKS TO INTERNAL
QUALITY ATTRIBUTES

INVESTIGATE

TECHNOLOGY

✓

Figure 8-4  Elisabeth Hendrickson’s version of the agile testing quadrants

Gregory_Crispin_CH08.indd 112 9/10/14 11:19 AM

	 Using Other Influences for Planning	 113

the different types of tests you need in order to deliver the right value
for your customers.

Using Other Influences for Planning

There are many useful models and ideas for helping us in our test plan-
ning, and we shouldn’t throw them away. As Tim Ottinger and Jeff
Langr have said (Ottinger and Langr, 2009b), a mnemonic for think-
ing about what are called nonfunctional requirements is still useful. The
FURPS model (see Figure 8-5) was developed at Hewlett-Packard and
was first publicly elaborated by Grady and Caswell (Wikipedia, 2014f);
it is now widely used in the software industry. The + was later added
to the model after various campaigns at HP to extend the acronym to
emphasize various attributes.

James Whittaker developed a methodology he calls the Attribute Compo-
nent Capability (ACC) matrix (Whittaker, 2011) to help define what to test
based on risk. ACC consists of three different parts that define the system
under test: Attributes, Components, and Capabilities. He defines these as:

■■ Attributes (adjectives of the system) are qualities and character-
istics that promote the product and distinguish it from the com-
petition; examples are “Fast,” “Secure,” “Stable,” and “Elegant.”

■■ Components (nouns of the system) are building blocks that
together constitute the system in question. Some examples of

FURPS+

Functionality

Usability

Reliability

Performance

Supportability

Design constraints

Implementation req’ts

Interface req’ts

Physical req’ts

Plus:

Figure 8-5  FURPS+ flash card (Ottinger and Langr, 2011)

Gregory_Crispin_CH08.indd 113 9/10/14 11:19 AM

114	 Chapter 8   n  Using Models to Help Plan

Components are “Firmware,” “Printing,” and “File System” for
an operating system project, or “Database,” “Cart,” and “Product
Browser” for an online shopping site.

■■ Capabilities (verbs of the system) describe the abilities of a par-
ticular Component to satisfy the Attributes of the system. An
example Capability for a shopping site could be “Processes mon-
etary transactions using HTTPS.” You can see that this could be
a Capability of the “Cart” component when trying to meet the
“Secure” Attribute. The most important aspect of Capabilities is
that they are testable.

Creating a high-level matrix using this model can be a simple way to
visualize your system. Figure 8-6 shows an example of what such a
matrix might look like. Gojko Adzic agrees that exposing system char-
acteristics and providing more visibility is definitely a good idea (Adzic,
2010a), though he cautions that while we can learn from other fields,
we should be careful about using them as a metaphor for software
development.

Use heuristics such as Elisabeth Hendrickson’s “Test Heuristics Cheat
Sheet” (Hendrickson, 2011) or tried-and-true techniques such as state
diagrams or truth tables to think of new ideas for attributes. Combine
these ideas with models like the Quadrants so that the conversations
about the system constraints or usability can extract clear examples.
Using all the tools in your toolbox can only help increase the quality of
the product.

Components Capabilities

Manage profile

Mobile App Firmware Printing Fast Secure

INFLUENCE AREA RISK / IMPORTANCE

Stable

Send messages

Update network

Attributes

Figure 8-6  ACC example

Gregory_Crispin_CH08.indd 114 9/10/14 11:19 AM

	 Planning for Test Automation	 115

Planning for Test Automation

Since Mike Cohn came up with his test automation pyramid in 2003,
many teams have found it a useful model to plan their test automation.
To take advantage of fast feedback, we need to consider at what level
our automation tests should be. When we look at the standard pyramid,
Figure 8-7, we see three levels.

The lowest level is the base—the unit tests. When we consider testing,
we should try to push the tests as low as they can go for the highest
return on investment (ROI) and the quickest feedback.

However, when we have business logic where tests need to be visible to the
business, we should use collaborative tools that create tests at the service
layer (the API) to specify them in a way that documents system behavior.
See Chapter 16, “Test Automation Design Patterns and Approaches,” for

Manual / ET
Tests

Push the
tests
lower for
higher
ROI

Workflow
Tests

Through the UI

API / Service Layer
Business Rules

Functional Tests

Unit Tests / Component Tests
(Programmer Tests)

Automate at
the feature level

Automate at
the story level

Automate at
the task level

Figure 8-7  Automation pyramid

Gregory_Crispin_CH08.indd 115 9/10/14 11:19 AM

116	 Chapter 8   n  Using Models to Help Plan

more details. It is at this layer that we can automate at the story level so
that testing and automation can keep up with the coding.

The top layer of the pyramid consists of the workflow tests through the
user interface (UI). If we have a high degree of confidence in the unit
tests and the service-level or API-level tests, we can keep these slower,
more brittle automated tests to a minimum. See Chapter 15, “Pyramids
of Automation,” for more detail on alternative pyramid models.

Practices such as guiding development with examples can help define
what the best level for the test is. A team’s cadence can be set by how well
they plan and execute their automation and how well they understand
the level of detail they need. Consider also how to make your automa-
tion test runs visible, whether displayed in the continuous integration
environment or on a monitor that is in the open.

Summary

Models are a useful tool for planning. In this chapter, we covered the
following points:

■■ The agile testing quadrants provide a model for thinking about
testing in an agile world.

■■ The Quadrants help to emphasize the whole-team responsibil-
ity for testing.

■■ They provide a visible mechanism for talking about the testing
needed.

■■ The left side is about guiding development, learning what to
build, and preventing defects—testing early.

■■ The right side is about critiquing the product, finding defects,
and learning what capabilities are still missing.

■■ Gojko Adzic provides an alternative way to think about the
Quadrants if you are in a lean startup or continuous delivery
environment.

■■ We also introduced an alternative quadrant diagram from Elisa-
beth Hendrickson that highlights confirmatory checks versus
investigative testing.

Gregory_Crispin_CH08.indd 116 9/10/14 11:19 AM

	 Summary	 117

■■ There are already many tools in our agile testing toolbox, and we
can combine them with other models such as the Quadrants to
make our testing as effective as possible.

■■ FURPS and ACC are additional examples of models you can use
to help plan based on risk and a variety of quality characteristics.

■■ The automation pyramid is a reminder to think about automa-
tion and to plan for it at the different levels.

Gregory_Crispin_CH08.indd 117 9/10/14 11:19 AM

